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Kinematics Analysis of Two Parallel Locomotion Mechanisms

Ping Ren

ABSTRACT

This dissertation presents the kinematics study on two cases of parallel locomotion
mechanisms. A parallel locomotion mechanism can be defined as “a mechanism with
parallel configuration and discrete contact with respect to the ground which renders a
platform the ability to move”. The first case is a tripedal robot and the second case is an
actuated spoke wheel robot. The kinematics study on these two mobile robots mainly
includes mobility, inverse and forward kinematics, instantaneous kinematics,
singularity and so on.

The tripedal robot STriDER (Self-excited Tripedal Dynamic Experimental Robot)
is expected to walk utilizing its built-in passive dynamics, but in its triple stance phase,
the kinematic configuration of the robot behaves like an in-parallel manipulator. The
locomotion of this novel walking robot and its unique tripedal gait are discussed,
followed by the definitions of its coordinate frames. Geometric methods are adopted for
the forward and inverse displacement analysis in its triple stance phase. Simulations are
presented to validate both the inverse and the forward displacement solutions. The
instantaneous kinematics and singularity analysis are developed respectively. Based on
the screw theory, the Jacobian matrices are assembled. Using Grassmann Line
Geometry, each row of the Jacobian matrices is interpreted as a line in 3D space and the
analytical conditions of the linear dependency cases are identified, which corresponds
to the forward singular configurations of the robot.

The actuated spoke wheel robot IMPASS (Intelligent Mobility Platform with Active
Spoke System) is investigated as the second case. It is revealed that this robot has
multiple modes of locomotion on the ground and it is able to change its topology by
changing the contact scheme of its spokes with the ground. This robot is treated as a
mechanism with variable topologies and Modified Gribler-Kutzbach criterion and
Grassmann Line Geometry are adopted to identify the degrees of freedom (DOF) for
each case of its topological structures. The characteristic DOF are then verified through
the testing on the robot prototype. The forward and inverse kinematics is investigated
for two cases of its topologies. In order to improve the computation efficiency of the
inverse kinematics formulation, virtual serial manipulator models are constructed. The
effectiveness of the virtual serial manipulator models has been validated with numerical
simulations.

In conclusion, kinematics analyses have been successfully performed on the two
parallel locomotion mechanisms. The results are utilized to control the robots’ motions
in specific configurations. The foundation has been laid for the future development of
the robot prototypes and the future research on dynamics, control, intelligence and so
on.
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INTRODUCTION

One focus of today’s robotics science and technology is to develop novel locomotion
mechanisms that possess adequate mobility in various environments. With the
implementation of appropriate locomotion schemes, mobile platforms can perform those
tasks that are dirty, dull, dangerous or inaccessible to human beings, such as scientific
exploration of remote areas, military surveillance, search and rescue missions and so on. The
locomotion of traditional manned ground vehicles mainly includes wheels, tracks and hybrid
combinations of both. However, the growing demand for lightweight mobile robots calls for
innovative concepts on alternative locomotion.

|. Parallel Locomotion M echanisms

The scientific study on legged locomotion as an alternative to wheels and tracks began
over a century ago, and a human-controlled, four-legged walking machine with adjustable
gaits was firstly built at General Electric in mid-1960s, as was introduced in [1].

Through the viewpoint of modern kinematics, wheeled or tracked vehicles are inherently
different from legged walking machines in that the former always maintain continuous
contact with the ground while the latter have discrete contact with the ground. Additionally,
in any of its stable configurations, the body or platform of the walking machine is always
connected to the ground through multiple in-parallel branches. As the legs or branches are
lifted above and then put down, the body is moved from place to place. Meanwhile, as the
machine walks, the location and geometry of the virtual base formed by the contact feet on
the ground change as well.

Based on the preliminary discussion above, a class of alternative locomotion mechanisms
can be proposed which distinguish themselves by their kinematically parallel configurations.
A parallel locomotion mechanism can be defined as “a mechanism with parallel configuration
and discrete contact with respect to the ground which renders a platform the ability to move”.
Another important and necessary characteristic of a parallel locomotion mechanism is its
ability to change topologies. Usually, a parallel locomotion mechanism has more than one
topology; when a branch is lifted above the ground, the topology of the mechanism changes
correspondingly, as well as the geometry of its virtual base on the ground. For such
locomotion mechanisms, a fundamental research on their kinematics is quite necessary, as it
will lay the foundation for other studies such as design optimization, dynamics modeling,
nonlinear control, motion planning and so on.

Previous examples of parallel locomotion mechanisms can be found in biped humanoid
robots, four legged or six legged biomimetic robots and so on. This dissertation presents the
kinematics analysis of two novel mobile robots currently under development at RoMelLa:
Robotics and Mechanisms Laboratory in Virginia Tech. Each robot features a different case
of parallel locomotion mechanism. The first robot is named STriDER (Self-excited Tripedal
Dynamic Experimental Robot), which is a three-legged robot utilizing its build-in passive
dynamics for walking. Its novel tripedal gait and triple stance phase are introduced in Chapter
1, with Chapter 2 to 5 mainly addressing the inverse and forward kinematics, instantaneous
kinematics and singularities in its triple stance phase. The second robot is named IMPASS
(Intelligent Mobility Platform with Active Spoke System), which is an actuated spoke



wheeled robot that has various topologies with respect to the ground. The uniqueness of this
spoke wheel is that each spoke can be actuated to stretch in or out independently. The robot’s
multiple modes of locomotion are introduced in Chapter 6. The DOF (Degrees Of
Freedom), inverse and forward kinematics in each topology are analyzed through Chapter 7
to 9. Finally, Chapter 10 summaries the conclusions obtained based on the current research
on these two robots, and discusses the future research.

Please note that the term “mobility” referred in this work has two types of definitions.
One is defined as the overall quality of a mobile robot’s free moving over all types of terrains
while retaining its ability to perform its primary mission. The other is defined as the
continuous or instantaneous DOF in the configuration of a mechanism, which has
quantitative values.

I1. Literature Review on Parallel Manipulatorsand M echanismswith

Variable Topologies

Previous works in the areas of parallel manipulators and mechanisms with variable
topologies (MVTs) provide background and insight for the work with the two cases of
parallel locomotion mechanisms: three-legged robot STriDER and spoke-wheeled robot
IMPASS. In this section, a literature review of the past research on parallel manipulators is
presented firstly, followed by the review on the works of mechanisms with variable
topologies.

1. Parallel Manipulators

In this section, the concept of parallel manipulators is introduced at first. The literature
reviews on parallel manipulators can mainly be divided into three areas. First, inverse and
forward kinematics, also called the inverse and forward displacement analysis. This area
focuses on the calculation of the position/orientation of the end-effector (body) with the
known joint variables and the calculation of the joint variables with given position/orientation
of the end-effector. The second area is the Jacobian kinematics, also called instantaneous
kinematics. The Jacobian matrix is developed for the mapping between the joint rate space
and the end-effector velocity space. The third area is singularity analysis. With various
methods, the singularity configurations of parallel manipulators are identified and the
elimination scheme is proposed.

During the last two decades, many researchers have studied extensively the kinematics of
parallel manipulators. A typical parallel manipulator consists of a moving platform that is
connected to a fixed base by several branches. Compared with serial manipulators, parallel
manipulators usually can provide better motion accuracy, rigidity, speed and larger
load-to-weight ratio. One reason is that the accumulated error and load are shared by multiple
branches instead of one. However, due to the existence of multiple close loops in their
mechanical architectures, the workspace generated by parallel manipulators is smaller than
their serial counterparts and the kinematics are much more complicated. Although those two
drawbacks exist for parallel manipulators, in a large number of operation cases which require
high precision and high speed positioning in smaller workspace, the noticeable advantages of
parallel manipulators can overcome their drawbacks. Nowadays, parallel manipulators are



widely used in machine tools, medical applications, haptics devices, motion simulators and so
on.

In 1965, Stewart first introduced a novel six DOF mechanism with six independent
extensible limbs, which is mainly used in flight simulators and widely known as the Stewart
platform [2]. Fig.l displays the typical structure of s Stewart platform. Hunt considered the
Stewart platform and other parallel mechanisms as robot manipulators in [3] and among
various types of parallel manipulators, Stewart platform is not only the most representative
but also the most complicated. Many other researchers who studied the kinematics of parallel
manipulators demonstrated that parallel manipulators have many inverse characteristics to
that of serial manipulators.

Podhorodeski and Pittens considered strictly-serial and fully-parallel manipulators
(Stewart platform, see Fig.l) as two extreme cases of a broader class of manipulator
structures, which consist of several branches, each comprised of actuated and passive joints
distributed in a serial manner, acting in parallel on a common end-effector [4]. Manipulators
possessing such structures are termed in-parallel manipulators. Through proper design,
in-parallel manipulators can exploit the advantages of both fully-parallel and strictly-serial
devices. Considering the various types of joint, the in-parallel manipulators can expand into a
huge family. Fig.1l shows the concept of an in-parallel manipulator. Note that, the most right
branch of this in-parallel manipulator is claimed by the author to be kinematically simple.
This property can be utilized to make the solutions of its kinematic problems relative easy to
obtain.
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In general, forward kinematics problem of a parallel manipulator is more difficult than its
inverse kinematics problem due to the existence of multiple forward displacement solutions.
As for a serial manipulator, the opposite is usually true. Numerical methods such as
continuation method have often been used to solve the forward displacement problems of 6
DOF parallel manipulators. Closed-form solutions can also be obtained in some special cases
of the Stewart platform as in [5-7] and often end up with solving a 16th order polynomial
equation with respect to a single variable. Specifically, as discussed in [8], there are mainly
two methods to the FDP of parallel manipulators: numerical approach and closed-form
solution approach. In 1993, Raghavan successfully applied a numerical method utilizing the
continuation method originally proposed by Garcia in [9] to solve the FDP of general Stewart
Platforms and obtain all 40 solutions in complex field [10]. Unlike numerical approach,
closed-form solution approach usually firstly eliminates the unknown variables from the
polynomial system to reach an analytical characteristic polynomial equation with respect to a
single variable, and then solve for the closed-form solutions. If the characteristic equation has
an order lower than five, then the solutions can be represented with analytical expressions.
Based on the development of the closed-form solution to the FDP of Stewart Platforms, the
FDP of three-branch in-parallel manipulators can now be solved by treating the in-parallel
manipulator as a special case of a Stewart Platform. The forward position analysis on a
general 3/6 Stewart Platform, referred as Triangular Symmetric Simplified Manipulator
(TSSM) in [11], was developed by Innocenti and Parenti-Castelli in [6]. Later, Merlet solved
the FDP of a Stewart Platform with hexagonal mobile platform in [12] and concluded that a
general parallel manipulator with a triangular platform had at most 16 forward displacement
solutions (assembly modes). Based on the concept of kinematically simple branches in [4],



Notash and Podhorodeski proposed a class of three-branch six DOF. in-parallel manipulators
with revolute joins and passive spherical joints in [13]. The FDP of this class of manipulators
with non-redundant sensing schemes can still refer to [4]. The authors of [13] examined all
the redundant sensing cases with more than six known joint angles and came up with the
complete forward displacement solutions for this class of in-parallel manipulators with
actuated revolute joints. Later, in their following work in [14], the FDP with not only
actuated revolute joints but also prismatic ones are discussed. The three-branch six DOF
minimanipulator invented by Tahmasebi and Tsai in 1994 uses three five-bar linkage drivers
as inputs and it also has at most 16 closed-form forward displacement solutions [15].

In the past twenty years, the study on in-parallel manipulators with three legs was
particularly —addressed. Notash and Podhorodeski  proposed a three-legged
Revolute-Revolute-Revolute-Spherical (RRRS) in-parallel manipulator with kinematically
simple joint-layouts in [13] and provided analysis on its complete forward displacement
solutions. Later, they expanded their method to general three legged parallel manipulators
which not only have revolute joints but also have prismatic joints. Other types of three legged
in-parallel manipulators were also studies. Such three-legged manipulators included the
Prismatic-Prismatic-Spherical-Revolute (PPSR) mini-manipulator built by Tsai and
Tahmasebi [15, 16], the PPRS built by Ben-Horin and Shoham [17], the PPSP built by Byun
and Cho [20], the Universal-Spherical-Revolute (USR) proposed by Simaan [18], the URS
built by Angeles et al [19] and so on. All those three-legged in-parallel manipulators share a
common kinematic characteristic, that is, each leg has one passive 3 DOF spherical joint and
three actuated or unactuated 1 DOF., thus allowing the mobile platform of the manipulator to
have 6 DOF.

Among these literatures, the work done by Notash and Podhorodeski are the most
notable, because they not only studied the forward kinematics with 6 actuated joints but also
the redundant cases with more than 6 active joints. The results from their research
demonstrated that redundant active joints are really an asset for the in-parallel manipulator
because they can reduce the number of forward displacement solutions, thus allowing for
fault tolerance operations.

Not only the forward and inverse kinematics but also the Jacobian and singularity
analysis of three legged in-parallel manipulators received a lot of attention from previous
researchers. Tsai outlined two methods to develop the Jacobian matrices for parallel
manipulators in [20]. One is conventional Jacobian analysis based on velocity vector-loop
method; the other is screw-based Jacobian utilizing theory of reciprocal screws. Since these
in-parallel manipulators have three serial legs connecting the platform to the base, it is
necessary to examine singularities of both forward and inverse kinematics. Singularity
analysis with conventional Jacobian requires finding the conditions under which the
determinant of the Jacobian matrix is equal to zero. Singularity identification with
screw-based Jacobian can be developed using line geometry, a.k.a Grassmann Line Geometry,
because each row of the screw-based Jacobian matrix is equivalent to a Plicker line
coordinate. By checking the linear dependency of these spatial lines as described in [21] and
[22], the singularities can be identified.

Due to the existence of multiple loops in an in-parallel manipulator, the analytical
expression of the Jacobian matrix in an in-parallel manipulator is very complicated.



Therefore, it is extremely difficult to derive the determinant of the Jacobian matrix and
factorize the huge expression to derive the analytical conditions of singularity. Compared
with conventional Jacobian, screw-based Jacobian in associate with line geometry shows a lot
of advantages in identifying the singularity from a Jacobian matrix with very complicated
form, especially when the in-parallel manipulator can be actuated either non-redundantly or
redundantly. Since under redundant actuation, the Jacobian matrix of the kinematic system is
no longer a six by six square matrix, such matrices have no determinant and checking the
linear dependency of each column is quite inefficient. Notash [23, 24] and Dash [25] used
screw-based Jacobian together with line geometry to consider the dependency of actuated
joint wrenches and find singularities. Notash also proposed the elimination of joint wrench
degeneracy by appropriate redundant actuation. Hao and McCathy [26] investigated the
conditions required for parallel manipulators to have line-based singularities and concluded
that having spherical joints on the mobile platform is a sufficient condition to ensure the
line-based singularities of parallel manipulators.

Various approaches other than line geometry have been performed for the singularity
analysis on three-legged parallel manipulators. Ebert-Uphoff et al. [27] investigated the
singularity of a characteristic tetrahedron which corresponds to the singularity of the
manipulator. Yang et al. [28] developed his singularity analysis by focusing on the velocities
of passive joints. Angeles et al. [19] found the singularities of the three legged URS robot by
analyzing the singularities of the serial-equivalent manipulator. Recently, Ben-Horin and
Shoham enumerated all possibilities of the kinematic structure of three-legged in-parallel
manipulator and proposed Grassmann-Cayley algebra as a tool to obtain the singularity
conditions of this family of manipulators [29].

2. Mechanismswith Variable Topologies

MVTs are a special type of mechanisms sophisticatedly designated with the ability of
changing topologies. During the topology changing process of MVTs, not only the numbers
and/or kinematic types of links and joints are changeable but also the mobility of mechanisms
is variable [30, 31]. Some notable MV Ts presented in recent years include:

Kinematotropic linkages, originally proposed by Wohlhart in 1996 in [32] and then
extended to four basic kinematotropic single-loop chains by Galletti et al. based on the theory
of displacement groups in [33]. In such mechanisms, the types of the joints and the number of
the links are not changing. However, the mobility of the complete mechanical system
changes due to the variation of the joint variables.

Metamor phic mechanisms of foldable/erectable kinds, suggested by Dai et al. in [34, 35].
The first type of metamorphic mechanism is a “mechanism whose number of effective links
changes as it moves from one configuration to another” [34]. It was inspired by a cardboard
box comprised of flat card creased to enable the folding or unfolding of a structure. Its
mobility changes through the combination of card panels (treated as kinematic links) as well
as the predetermined location of the creases (treated as revolute joints). The pop-up paper
mechanisms presented by Winder et al. in [36] could also be classified into this type.

Metamorphic mechanisms with variable joints. In the second type of metamorphic
mechanism, the change of the topological structure is achieved through applying adjustable
geometric constraints to certain joints. A notable example is the metamorphic parallel



mechanism with rT joints in [37]. In this novel rT joint, one of its revolute joint is used to
modify the assembly of the other two joints. The rT joint is actually a variable universal joint.
As the directions of the rT joint’s two principal rotation axes change, the mobility of the
platform changes as well. Similar work can be found in [31], in which a logical foundation
based on graph theory was provided for the analysis on variable kinematic joints.
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As a summary, the parallel locomotion mechanisms proposed is a new interdisciplinary
area, which requires background knowledge in mobile robotics, parallel mechanisms and
mechanisms with variable topologies. The contribution of this work mainly lies in three
aspects. First, the scope and depth of mechanism kinematics are expanded through solving
the practical problems in the two novel robotic systems, i.e. STriDER and IMPASS.
Secondly, the conclusions and results obtained from this kinematics study can be used to
guide the design and testing of the robot prototypes for the two projects and establish
frameworks for their future research in dynamics, control, intelligence and so on. Thirdly, the
author wishes this work could have broader impact on other researchers, thus promoting more

innovations of locomotion mechanisms to improve robots’ general mobility in various
environments.

Case |: STriDER (Self-excited Tripedal Dynamic Experimental Robot)



Chapter 1 Introduction to STriDER

STriDER (Self-Excited Tripedal Dynamic Experimental Robot) is an innovative
three-legged mobile robot that utilizes the concept of passive dynamic locomotion for
walking. To initiate a novel tripedal gait, two of its legs are oriented to push the center of
gravity outside a support triangle formed by the three foot contact points. As the robot begins
to fall forward, the body rotates and the swing leg swings naturally in between the two stance
legs and catches the fall. This enables it to walk with high energy efficiency and also allows it
to be statically stable when standing with all three legs on the ground. Some examples of
previous work on three-legged mobile robots mainly include, the rotating tripedal robot
developed by Lyons and Pamnany, which could move its body by rotating about one of its
legs[38]; the micro scale walking robot proposed by Martel et al.,, which had three
piezoelectric legs [39, 40]; and the modular robot ASHIGARU which is formed by individual
three-legged modules which has primitive mobility through crawling on the ground [41, 42].
Lee and Hirose also described the walking strategy for a four-legged robot when it lost one of
its legs [43]. However, these robots are fundamentally different from the robot presented in
this paper.

The forward and inverse displacement analysis in STriDER’s triple stance phase is
presented in this thesis. STriDER can be modeled as a three-branch in-parallel manipulator
given the assumption that in the triple stance phase, all three foot contact points are fixed on
the ground with no slipping. This kinematics study can be implemented to control the
motions of the robot in its triple stance phase and it also lays the foundation for the dynamics
analysis on gaits, path planning and so on. Note that the methods used in the following
analysis are only valid in this phase and they are not valid when at least one foot leaves the
ground or slips significantly. The stability margin of STriDER is described in [44] and the
friction constraints of the feet are studied in [45, 46], which can be used to develop the
criteria under which the feet of this robot neither leave the ground nor slip.

In this chapter, Section 1.1 presents the locomotion concept of STriDER including a
novel tripedal gait and the strategy of changing directions. Section 1.2 introduces the triple
stance phase of the robot, and describes its kinematic configuration and adaptation to a
three-branch in-parallel manipulator. This model is then adopted in Chapter 2 to solve the
inverse and forward displacement problems for STriDER in its triple stance phase. Section
1.3 summaries the organization of the chapters about the first case of parallel locomotion
mechanism.
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FIG.1.1 STriDER (SELF-EXCITED TRIPEDAL
DYNAMIC EXPERIMENTAL ROBOT)
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1.1. Locomotion

The design and locomotion of robots are often inspired by nature; however, the
three-legged walking machine presented here exemplifies an innovative tripedal gait. In this
section, the kinematic configuration, link parameters, kinematic analysis for in-parallel
manipulators are briefly reviewed and the connection between this mobile robot and
three-branch in-parallel manipulators is explained.

Unlike common bipeds, quadrupeds, and hexapods, STriDER, shown in Fig.1.1, is an
innovative three-legged walking machine that incorporates the concept of actuated passive
dynamic locomotion. This idea, introduced by Tad McGeer in the late 1980s, uses the
natural built-in dynamics of the robot to create the most efficient walking motion [47].
Furthermore, the proper mechanical design of a robot can provide energy efficient
locomotion without sophisticated control methods [48, 49].

The novel tripedal gait is simply implemented, as shown in Fig.1.2 for a single step; a
video can be seen in [50]. During a step, two legs act as stance legs while the other acts as a
swing leg. STriDER begins with a stable triple stance phase (Fig.1.2(a)), then the hip links
are oriented to push the center of gravity forward by aligning the stance legs’ pelvis links
(Fig.1.2(b)). As the body of the robot falls forward, the swing leg naturally swings in between
the two stance legs (Fig.1.2(c)) and then extends out to catch the fall (Fig.1.2(d, €)). When the
swing leg touches the ground, the robot embraces its balance again (Fig.1.2(e)). As the robot
is taking one step (Fig.1.2(b - e), its body needs to rotate 180° to prevent the legs from
tangling up. Once all three legs are in contact with the ground, the robot regains its stability
and the posture of the robot is reset in preparation for the next step (Fig.1.2(f)) [51, 52]. The
strategy of changing directions with multiple steps can be found in Ref.[44].
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FIG.1.2 SINGLE STEP TRIPEDAL GAIT

Gaits for changing directions can be implemented in a way as illustrated in Fig.1.3. By
changing the sequence of choice of the swing leg, the tripedal gait can move the robot in 60°
interval directions for each step.
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1.2. Triple Stance Phase

STriDER is developed for deploying sensors such as cameras, rather than for
manipulating tasks. The tall nature of STriDER makes it ideal for sensor surveillance at high
positions. Two working prototypes of STriDER have been fabricated, as shown in Fig.1.4.
The first prototype on the left in this figure, which is approximately 1.8 meters tall, is used to
test the validity of passive dynamic gait for a single step[51]. The second prototype on the
right, with a height of approximately 0.7 meters and nine actuated revolute joints, is used to
study STriDER’s kinematics in triple stance phase, stability margin, transitions between gaits,
controlled walking gaits etc.

FIG.1.4 STriDER PROTOTYPES
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The definition of coordinate systems for each leg is shown in Fig.1.5. The configurations
for all three legs of STriDER are identical, thus the analysis for one leg is presented here as
the other two legs will follow the same procedure. The subscript i in the coordinate frames,
links, and joint labels, denotes a general leg number (i =1, 2 or 3).

FIG.1.5 COORDINATE FRAMES AND JOINT DEFINITIONS

Table 1.1 lists the nomenclature used to define the coordinate frames, joints and links.
First, as shown in Figl.5, a global coordinate system {Xc, Yc, Zc}, is established with its
origin at the centroid of the triangle formed by three foot contact points and axis Xc¢ pointing
to P4, the foot position of leg 1. It is used as the reference for positions and orientations of the
body. Next, the body coordinate frame {Xg, Yg, zg} is defined. Each leg is separated by 120°,
leg 1, leg 2 and leg 3 are 0°, 120°, and 240° from the positive Xg axis, respectively. Each leg
includes four actuated joints, Jij, Jai, Jsi, and J4i. The hip abductor joint, J;;, with the direction
parallel to zg axis, controls the stance legs’ rotator joints to align during a step.’ In the first
prototype of STriDER developed in [50, 51], three independent abductor joints are used to
accomplish the alignment. Later in [52], a novel abductor joint mechanism to align the rotator
joints, driven by only one actuator, is used to replace the three abductor joints and reduce the
weight of the body. This joint aligning mechanism can efficiently switch between the modes

! Please note that the arrangement of three rotator joints in FIG.1.5 is slightly different from those in Fig1.1, where two rotator joints are
aligned and the swing leg is ready to take a step (Figl.2(b)). The following sections use the configuration in Figl.5 to elaborate the

displacement analysis, without losing generality.
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in which two of the three rotator joints are aligned to prepare for a step, as the case in Fig.1.1,
and the mode in which all three rotator joint axes, i.e. J,;, intersect at the center of the body,
as shown in Fig.1.5. Thus, J;; is not treated as an active joint in this paper. Next, J,;, the hip
rotator joint, allows the legs to rotate around the z;; axis. Js;, the hip flexure joint and J4; the
knee joint are both revolute joints that rotate around the z,; and zz; axes, respectively. Two
coordinate frames {Xai, Vai, Z4i} and {Xpi, Ypi, Zpi} are established at each foot, e.g. the foot of
leg 1 in Fig.1.5. The three unit vectors in frame {Xpi, Ypi, Zpi} are defined to be parallel to the
global vector units. The foot contact points denoted by P; are modeled as spherical joints
during this analysis and {Xai, Yai, Zsi} relates to {xpi, Yri, Zpi} With three mutually orthogonal
passive joint angles. Finally, the links listed as Lg;, Laj, Loi, Lsi, and Ls; are clearly labeled in
Fig.1.4 and represent the body link, hip link which is equal to zero, pelvis link, thigh link and
shank link. Furthermore, links Lo;, Lo, and Loz are constant values that form the body
triangle.

TABLE 1.1 NOMENCLATURES

Nomenclature
i Leg number (i=1,2,3)
{Xo, Yo, Zo}: | Global fixed coordinate system
{Xg, VB, Zp}: Body center coordinate system
Jai: Hip abductor joint for leg i
Joi: Hip rotator joint for leg i
Jai: Hip flexure joint for leg i
Jai: Knee joint for leg i
Pi: Foot contact point for leg i
Loi: Body link for leg i
Ly Hip link for leg i (length =0)
Loi: Pelvis link for leg i
Ls;: Thigh link for leg i
Lai: Shank link for leg i

The coordinate systems are defined following the standard Denavit-Hartenberg’s
convention [53] and the link parameters are listed in Table 1.2, where K is the link number, (k
= 1,2,3,4), i is the leg number (i = 1, 2, 3). ax equals the distance along Xy from Ji; to the
intersection of the Xy and zg.1)i axes. dii is the distance along zy.1)i from Jy.)i to the
intersection of the Xy and zy.1)i axes. oy is the twist angle between zy.1y and zx; measured
about X, and 6 is the twist angle between X-1)i and X.; measured about zy-1)i.  Also, when
all 6, are equal to zero, the legs form a right angle between L, and Ls;. With these D-H

parameters, the homogenous transformation matrices HY , HZ , H3  HI between two

adjacent joints in leg i are developed, which represent the relative positions and orientations
of two adjacent local joint frames. These matrices are the foundation of the analysis in
Chapter 2.
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TABLE 1.2 LINK PARAMETERS

Link A o | dy O
1 | =0 [ 90° | 0 | 6,+90°
2 0 0 | Ln | 0,90°
3 | Ly | 0| o0 Oy
4 Lai 0 0 O

In the triple stance phase, STriDER can be considered as a three-branch in-parallel
manipulator given the assumption that all three foot contact points are fixed on the ground, as
shown in Fig.1.6. Since the position of the foot doesn’t change and the link can rotate around
the contact point freely, the point contact between the rigid foottip and the ground is modeled
as a spherical joint. This frictional point contact model was adopted by previous reseachers to
analyze the contact interaction between a multifinger gripper and a rigid object, as in [54-57].
The ground is then modeled as “the base” of the parallel manipulator, with the body as “the
moving platform”. Given the fact that the knee joints, hip flexure joints and hip rotator joints
are all revolute joints and each of the three legs mainly has two segments i.e. thigh and shank
link, STriDER belongs to the class of in-parallel manipulators with kinematically simple
branches proposed by Podhorodeski in 1994 [4]. The term in-parallel manipulator is used to
characterize a broader class of hybrid manipulation structures with fully-parallel actuated
manipulators, such as Stewart Platform [2], and strictly serial manipulators, such as
UNIMATE® PUMA robot, as two extreme cases. As stated in [4], such structures contain
serial branches acting parallelly on a common end effector and are capable of exploiting the
advantages of both fully-parallel and strictly-serial devices through proper design. Since the
foot joint is treated as a passive spherical joint with three degrees of freedom, each leg has a
total of six degrees of freedom including both actuated and passive joints (3 DOF for the foot
contact point, 1 DOF for the knee, flexure, rotator, respectively), thus allowing the body of
STriDER to have full six degrees of freedom. The possible kinematic configurations of 6
DOF. three-branch in-parallel manipulators are enumerated by Ben-Horin [29]. According to
his classifications based on joint types, the configuration of STriDER is an example of
3-SRRR (Spherical-Revolute-Revolute-Revolute) manipulators.
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FIG.1.6 GENERAL KINEMATIC REPRESENATION

When STriDER changes its position and orientation of its body without moving the feet
of the legs, the characteristics of its motion can be analyzed with the well-established
kinematics methodology of three-branch in-parallel manipulators. The methodology in the
research mentioned above can be adopted to solve STriDER’s inverse and forward
displacement problem in triple stance phase under its new configuration of 3-SRRR. Note
that, because the feet of the robot are not really constrained to the ground, the stability region
of STriDER is limited and the ground cannot generate reaction forces in any direction, which
results in STriDER’s smaller actual workspace in triple stance phase than conventional
in-parallel manipulators.

Generally, Section 1.1 and 1.2 present the basic information regarding STriDER. More
detailed information about the design of the hardware structure, the arrangement and testing
of the motors and the transmission mechanisms can be found in [51, 52].
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1.3. Summary

As introduced in Section 1.1 and 1.2, the kinematic configuration of STriDER when all of
its feet are in contact with the ground without slippery is equivalent to a three legged
spherical-revolute-revolute-revolute (SRRR) in-parallel manipulator when the contact point
between the foot and the ground is modeled as a passive spherical joint. This point contact
model has been adopted by several researchers to model the contact between multi-fingered
grippers such as [55]. In such a model, the contact interaction can be represented as a force
through a contact center; no moments can be transmitted through the contact. Thus, each leg
has three mutually orthogonal passive revolute joins with intersecting axes (equivalent to a
passive spherical joint) in additional to the three joints with motors mounted.

It is necessary to investigate the motion of STriDER when it stands on the ground with
three feet. The research presented in this thesis focuses on the kinematic analysis on its
equivalent three legged SRRR in-parallel manipulator. The structure of this thesis is as
follows. Chapter 2 deals with the forward and inverse displacement analysis of the robot
under both redundant sensing and non-redundant sensing. Chapter 3 demonstrates the
numerical example of STriDER to verify the analysis in Chapter 2. Chapter 4 briefly
introduces the theory of screws and shows the development of Jacobian matrix based on
reciprocal screws. In the beginning of Chapter 5, the line geometry is briefly introduced.
Then, possible singular configurations of this three-legged SRRR in-parallel manipulator are
proposed and the corresponding elimination method based on redundant actuation is
discussed.
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Chapter 2 Forward and Inverse Displacement Analysis

This chapter presents the forward and inverse displacement analysis of a novel
three-legged walking robot STriDER (Self-excited Tripedal Dynamic Experimental Robot).
STriDER utilizes the concept of passive dynamic locomotion to walk, but when all three feet
of the robot are on the ground, the kinematic structure of the robot behaves like an in-parallel
manipulator. To plan and control its change of posture, the kinematics of its forward and
inverse displacement must be analyzed.

The concept of this novel walking robot and its unique tripedal gait is already discussed
in Chapter 1 including strategies for changing directions, followed by the overall kinematic
configuration and definitions of its coordinate frames. When all three feet of the robot are on
the ground, by assuming there are no slipping at the feet, each foot contact point are treated
as a passive spherical joint. Kinematic analysis methods for in-parallel manipulators are
briefly reviewed and adopted for the forward and inverse displacement analysis for this
mobile robot. Both loop-closure equations based on geometric constraints and the intersection
of the loci of the feet are utilized to solve the forward displacement problem. Closed-form
solutions are identified and discussed in the cases of redundant sensing with displacement
information from nine, eight and seven joint angle sensors. For the non redundant sensing
case using information from six joint angle sensors, it is shown that closed-form solutions can
only be obtained when the displacement information is available from non-equally distributed
joint angle sensors among the three legs. As for the case when joint angle sensors are equally
distributed among the three legs, it will result in a 16th-order polynomial of a single variable.
Numerical method for polynomial systems such as continuation method can be used to solve
the problem. It was found that at most sixteen forward displacement solutions exist if
displacement information from two joint angle sensors per leg are used and one is not used.

2.1. Mobility Analysis

The moving platform of this in-parallel manipulator is connected to the fixed base
through three legs. Each leg is a chain with three actuated or unactuated revolute joints
arranged in a serial manner. One joint connects the end of each leg to the base. By using
conventional Grubler-Kutzbach criterion [58, 59], the number of the DOF of the moving
platform can be easily obtained as follows.

F=An-j-1)+> f
=6x(11-12-1)+ (1x9+3x3)
=6

where F denotes the number of the DOF., i.e., mobility of the moving platform, 1 = 6 for
spatial mechanisms, n is the number of links in this manipulator, j is the number of joints, f; is

the DOF of joint i, and > is the sum of the DOF of each joint. Therefore, the

three-legged S-R-R-R in-parallel manipulator proposed above has 6 DOF.. Regarding the
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mobility of this family of in-parallel manipulators, Tsai and Tahmasebi proved in [15] that if
each leg of the parallel manipulator has 6 DOF, then the mobility of the parallel manipulator
is 6, regardless of the number of legs.

2.2. Inverse Displacement Analysis

The inverse displacement analysis is to calculate the unknown internal angles 6,;, 03, and
04 for the hip rotator, hip flexure and knee joints, respectively from the given configuration
of the body. It is important for the position control of STriDER’s body in triple stance phase.
As previously mentioned, the angle between the positive xg axis and leg 1, leg 2 and leg 3is 0
degrees, 120 degrees, and 240 degrees, respectively. The angle between X and Xj;
measured about zg;, 64, is set equal to zero and treated as a constant in these calculations.
Also, the orientation and position of the body in relation to the global coordinate are known.
So, the unknown angles 6., 63, and 6, are calculated from the global body position and
orientation, #,; the angle between xg and each leg, and global foot positions. By treating the
system as an “elbow manipulator” problem as in [53], the unknown joint angle values can be
easily determined. Thus, for the ease of viewing, the leg is rotated 90 degrees around the Xj;
axis in Fig.2.1.

FIG. 2.1 ELBOW MANIPULATOR REPRESENTATION

Following the coordinate systems in Fig.2.1, a homogeneous transformation from the
global coordinate to the hip rotator joint was derived, as shown in Eq.(2.1),
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1

4x4

) ) ) Rli dli
i BpyOipgli — 0 o]
Ho - HoHBHOi _{ 0 } (21)

where RY and dY specify the orientation and translation of frame {Xu;, yii, 1} relative to

global frame {Xc, Yc, Zc} respectively. HZis the transformation matrix from body frame
{Xs, Y8, zg} to global frame {Xc, Y¢, Zc}, which represents the body’s orientation and
position expressed in {Xc, Yc, Zc}, while HY is a constant matrix representing the relative

position of the abductor in leg i with respect to the center of the body. Next, the orientation
and translation of {Xc, Yc, Zc} relative to {xui, y1i, Z1i} are found using Eq. (2.2) and (2.3),

RS =[RY] (2.2)

d? =-Rod! (2.3)

The orientation matrix, R;, and translation vector, d, are used to relate the position vector

of the foot in frame {Xc, Yc¢, Zc} to that in frame {Xu;, y1i, Z1i} as shown in Eq. (2.4),

Xpi
dy' = Rydg' +dj =| v,
(2.4)
Zpi

where df is the foot position in relation to the global coordinates and vector

[xPi Voi  Zpi ]T represents the foot position relative to the local hip rotator coordinates,

which is also the base of the elbow manipulator shown in Fig.2.1. This now becomes a
common elbow manipulator problem [53].
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The angle at the hip flexure joint, 8,;, is found using Eq.(2.5),

6, = Arctan 2 (Xq;, Yp )+ % (2.5)

where xpi and yp; are the x and y foot positions relative to the elbow manipulator base.
Notice that 90 degrees are added to this value due to the link parameter definition listed in
Table 2. Next, the angle at the knee joint, 64, is calculated, as shown in Eq.(2.6),

8, = Arctan2 ( D, +v1-D? ) (2.6)

where D is a constant term determined from Eq. (2.7),

Xpio + Ypi© F (ZPi - I-Zi)2 - Ly - Ly,

_ 4i
D = T 2.7)

where Ly; Lgi, and Ly are link lengths and zp; is the z foot position relative to the base. As
shown, with “£” in Eq. (2.6) there will be two values for ¢4, each corresponds to an elbow
up or elbow down case. Thus, there will also be two corresponding values for @3, as
calculated in Eq.(2.8),

6y = Arctan2(y X" + Y, Z ~ L)

- Arctan2(L,, + L, coséd,;,, L, sing,;)

4

(2.8)

In conclusion, if the body global position and orientation, the hip abductor joint angle 6s;,
and the global foot positions are known, then the internal joint angles, hip rotator joint angle
6y, hip flexure joint angle 65, and knee joint angle 6,4 can be calculated by modeling the legs
as elbow manipulators where the base is at the hip rotator joint and all link lengths are known
and constant.
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2.3. Forward Displacement Analysis

The forward displacement solution requires resolving the position and orientation of the
body with displacement information from the joint angle sensors. For the case of STriDER, it
has a total of nine joints that can be actuated and sensed.

2.3.1. Nomenclature“N1- No—N3" and Introduction

The nomenclature “N1 - N2 — N3” will be used to describe the sensing where N; corresponds to
the number of available displacement readings from the joint angle sensors in leg i. For
example, 3-2-1 means there are three sensed joint angles in leg 1, two sensed joint angles in
leg 2 and 1 sensed joint angles in leg 3.

Since the body has 6 DOF, at least six joint angles out of nine are needed for feasible
forward displacement solutions and each leg must have at least one known joint angle. All
possible cases of joint sensing are listed as follows: (1) 3-3-3 (nine joint angles sensed); (2)
3-3-2(eight joint angles sensed); (3) 3-3-1 and 3-2-2 (seven joint angles sensed); and (4)
3-2-1 and 2-2-2 (six joint angles sensed). Case 1, 2 and 3 are redundant sensing and case 4 is
non-redundant sensing. Especially, in case 4, 3-2-1 is referred to non-equally distributed
sensing and 2-2-2 is known as equally distributed sensing.

In triple stance phase, forward displacement analyses on redundant and non-redundant
sensing cases are both necessary. The fully sensed case of joint angles leads to a unique
solution of the body position and orientation, which has been utilized to realize the velocity
control of the body as in [60]. It also lays the foundation for a continuous joint-sensor-based
position monitoring throughout the cycle of multi-step walking of STriDER. If one or more
joint angle sensor is broken or faulty, the information of the body can still be obtained by
solving the forward displacement problems with less than 9 joint angles. By comparing the
solutions from different cases of sensor readings and checking the existence of common
solutions, the sensors with erroneous information can be detected. A similar work on fault
detection for in-parallel manipulators can be found in [61].

Note that, in the following analysis, the X¢ axis of global frame {Xc, Yc, Zc} in Fig.1.5,
is always chosen to point to the foot position of leg 1.

2.3.2. Nine Joint Angles Sensed Case [3-3-3]

If all nine displacements from the joint angle sensors are available, the location and orientation
of the body has a unique solution. First assume the body is positioned at the global origin with
zero orientation, and then with 3-3-3 sensing, the global position vector of each foot P;, i =
1,2,3, representing the leg number, can be calculated by performing the multiplications of
homogeneous transformation matrices as shown in Eq.(2.9.1). These three contact points
constitute a triangle in 3D space, which is treated as the virtual base of the in-parallel
manipulator. The location of the centroid of the base is described by Eq.(2.9.2):

T|eneneiinng (29.1)
1 1
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P. = (P, +P,+P,)/3 (2.9.2)

Three orthogonal unit vectors describing the orientation of the base can be found as:
u, = (R -R)/|(P-P)
uz = UXX(PZ - Pc)/Huxx(PZ _Pc )H

u, =u,xu,

(2.10)

with u, being the unit vector normal to the plane of the base, u, being the unit vector
pointing to the foot of leg 1, and u being the unit vector perpendicular to u, and u,. The

sign of “||” denotes the Euclidean norm. As indicated in Eq.(2.11.1), three unit direction

together with the position vector P, are assembled to form the

z

vectors, u, , u, , U

homogenous transformation matrix Hgwhich represents the relative position and orientation

of the global frame {Xc, Yc¢, Zc} located on the virtual base plane with respect to the body
frame {Xg, Y&, zg}. Since the body is firstly assumed at the origin with zero configuration, by

taking the inverse of H%, homogeneous transformation matrix HZ, which represents the

actual configuration of the body with respect to the real global frame {Xc, Yc¢, Zc} can be

derived, with three unit vectors u,,u,,u,denoting the orientation and vector B denoting the

position. The geometric relationship is shown in the following equations:

He = X y z c
o [O A 1} (2.11.1)

(2.11.2)
Byt

Note that STriDER, as a mobile robot, doesn’t have a real base with fixed geometry. If the
robot only has joint sensors installed, the fully-sensed case with all sensors functional is the
only way to get the geometry of the virtual base in the triple stance phase. As long as the
geometry of the base is known, the constraint equations of the foot position can be
established. Then, fewer sensed joint angles can be used to derive the position and orientation
of the body. This leads to the discussions of other sensing modes. The geometric relationships
in the forward displacement problem of a three-branch in-parallel manipulator in redundant
cases (eight or seven sensors) and the asymmetric non-redundant case (3-2-1) were discussed
in [13], where Notash and Podhorodeski interpreted the feasible solutions as the intersections
of different spatial shapes. Based on their method, the forward displacement solutions of
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STriDER in similar cases can be derived.

Generally, the calculation of the position and orientation of STriDER’s body with less
than 9 joint angles requires two steps. First assume the body is positioned at the global origin
with zero orientation and solve the unsensed joint angles to obtain locations of the feet by
using geometric constraints, either through looking for the intersections of various 3D shapes
or through solving the loop-closure equations. Then use Eq.(2.9), (2.10) and (2.11) to derive
the transformation matrix which represents the relative position and orientation of the body
frame {Xg, Ys, zg} With respect to the real global coordinates {Xc, Yc¢, Zc}. Note that in the
following sections, the geometric parameters of the base are assumed to be known and
utilized to establish the constraints.

2.3.3. Eight Joint angles sensed case [3-3-2]

Assume one sensor on leg 3 is broken or intentionally shut down. However, all the other joint
sensors in leg 1 and 2 are still functional. The location of P; and P, can be expressed in terms
of the known joint angles. As described in [13], with two points P; and P, fixed, the locus of
the P3given the constraint of the base triangle becomes a spatial circle C;, about the line
passing through P; and P, with a radius MP3. M is the projected point of P3 on line P1P,.
Meanwhile, with only one unknown joint angle in leg 3, the locus of P; under the constraint
of leg 3 is also a spatial circle C3 about certain joint axis.

As illustrated in Fig.2.2, 64 in leg 3 is assumed as the unsensed joint angle. Therefore two
spatial circles C;, and C3 must intersect in at least one location in order to have a feasible
solution. Once the location is determined, the position vector of P3 is known. Using Eq.(2.9)

and (2.10) and taking the inverse of HZ, the position and orientation of the body are

determined. Note that the centers, radii and unit mutual orthogonal vectors of C;, and C;
respectively, can be found from known geometric parameters and sensed joint angles. Cy,
and C3; have at most two real intersections, which corresponds to two feasible forward
displacement solutions. Since both C;, and Cjz can be expressed as quadratic equations,
closed-form solutions of the common roots can be derived.
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FIG.2.2 INTERSECTION OF TWO CIRCLES [3-3-2 CASE]

2.3.4. Seven Joint angles sensed case [3-3-1 & 3-2-2]

3-3-1 Sensing

When the information of all six joint angles in leg 1 and leg 2 is assumed to be available, the
location of P; and P, can be expressed in terms of the sensed joint angles. Considering the
constraint of the base triangle, the locus of P is a spatial circle C;, again. The locus of P3
under the constraint of leg 3 will be a sphere, a torus, or a ring plane, depending on the
relative position and directions of the unsensed joints. The implementation of this method in
the triple stance phase of STriDER is discussed in the following subsections for each of these
three cases. Each intersection of the spatial shapes represents a feasible forward displacement
solution.
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05 & O3 unsensed

63 and O35 in leg 3 are assumed to be the unsensed joints, whose axes are intersecting with
each other. The locus of the foot P3 is the sphere S3 as shown in Fig.2.3, with the center Qs
locating at the intersecting point of axis z;3 and z,3. The intersections of the sphere Sz and the
circle Cy 2 will be used to derive the forward displacement solutions. Generally, this case has
up to two intersections.

05 & 0Oy unsensed

63 and 043 Iin leg 3 are assumed to be the unsensed joints. Since the axes of these two joints
are skew axes and Ly is longer than Lsj, the locus of foot Ps is the horn torus T;. A
self-intersecting horn torus is illustrated in Fig.2.4. It is a special type of torus when the
length of the radius from the center of the hole to the center of the torus is smaller than the
length of the radius of the tube as described in [62]. As shown in Fig.2.5, the intersections of
the torus T3 and the circle Cy, will be used to derive the forward displacement solutions.
There are a maximum of four intersections existing in this case.

03 & 0Oy unsensed

033 and 0,3 are assumed to be the unsensed joints in leg 3. Since their axes are parallel and L3
is longer than Lss, the locus of foot P; is the planar circular ring CR3 as shown in Fig.2.6. The
intersections of the planar circular ring CR3 and the circle Cy, will be used to derive the
forward displacement solutions. There are up to two intersections of the circle C;, and the
circular ring CR3

As a summary of the three cases discussed above, the geometric parameters of various
spatial shapes (circle, sphere, torus, planar ring) are developed with known parameters and
sensed joint angles. All of these shapes can be described with quadratic equations. The
intersection points are determined through solving for the common roots of equation systems
representing the spatial circle and those 3D shapes (circle, sphere, torus, planar ring). Since
the orders of the polynomial equation systems are less or equal to four, closed-form solutions
can be obtained and represented with analytical expressions. With each solution of the
unsensed joint angle, the position vector P3 is derived and the same procedures as the all joint
angle sensed case [3-3-3] can be carried out to obtain the information of the body’s position
and orientation.

Mathematically, if a circle happens to be part of the sphere, the torus, or the planar ring,
there exist infinity intersections which correspond to infinity forward displacement solutions.
This is actually the singularity case in kinematic analysis, which will be fully addressed in
future research.
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FIG.2.3 SPHERE AND CIRCLE INTERSECTION
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CR;

Ci2

FIG.2.6 CIRCULAR PLANE AND CIRCLE INTERSECTION
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3-2-2 Sensing

In the case of 3-2-2 sensing, the location of P; can be expressed with the sensed joint angles.
For the leg with three sensed joint angles and any leg with two sensed joint angles, there
exists a loop-closure constraint equation with respect to a single unsensed joint angle. For
each of the solutions derived, the case of 3-2-2 sensing reduces to the 3-3-2 sensing and there
are at most four solutions with closed-form as described in [13].

2.3.5. SixJoint Angles Sensed Case[2-2-2 & 3-2-1]
2-2-2 Sensing

The 2-2-2 sensing case in the triple stance phase of STriDER is kinematically identical to the
3/6 Stewart platform studied by Innocenti and Parenti-Castelli in [6]. Three loop-closure
equations are utilized to derive a 16th-order polynomial with respect to a single variable. This
indicates that at most 16 solutions may exist for 2-2-2 sensing. Closed-form solutions can be
derived by solving this higher order polynomial. Geometrically, the locus of each foot when
two joint angles in each leg are sensed and one joint angle is not sensed is a spatial circle C; (i
= 1,2,3). These three equations will solve for the particular points on the circles that satisfy
the geometric constraints of the base triangle P;P,P3. A general example of this case is
displayed in Fig.2.7.
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FIG.2.7 GENERAL NON REDUNDANT [2-2-2 CASE]

As shown in Fig.2.7, each leg has two sensed joint angles and one unsensed joint angle.
The loci of P4, P, and P3 are three independent spatial circles C;, C, and C3 with the centers at
Q1, Q2 and Qs respectively. For each loop PiPi+1Qi+1Qi, 1 = 1,2,3 (modulo3), the following
vector equations can be written:

I:)i+1 - Pi = (Pi+1 - Qi+1) + (Qi+1 - QI) - (PI - QI) (212)
P~ F:‘ =iy (2.13)
P-Q =r(u cosg +v;sing) (2.14)
P,—Qu :I’i+1(q+1(1159|+1 +Vi+13in‘9|+1) (2.15)

where u; and v; are mutual orthogonal vector units parallel to the plane of the C; circle,
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the direction of these two vector units are chosen such that the definitions of 6; are consistent
with Chapter 1; di;+1) represents the distance between P; and Pi.q; r; is the radius of C;. Again,
the information of u; , vi ,Q; i and dig+1) are uniquely defined by the know geometric
parameters and sensed joint angles.

By squaring Eq.(2.12), the following scalar equation is obtained:

'91CiCis1 + '9oCiSia + '03SiCint + '0uSiSiv 1+
i i i i i (2.16)
0sCi + 06Si + 07Cir1 + gSisat Qo =0

where Cij = cos 6 , Si = sin 6 , i = 1,2,3 (modulo3),
and

'91 = 2114 Fjeg Uy U (2.16.1)
' = 2 1 Fiag Ui Vi (2.16.2)
s = 211 e Vi Ui (2.16.3)
94 = 211 e Vi Ui (2.16.4)
'gs = 217 (Qiv1 - QiU (2.16.5)
‘96 =21 (Qis1 - Qi) (2.16.6)
47 = 2 i1 (Qi - Qua )Uina (2.16.7)
'gs = 2 11 (Qi - Qia Vit (2.16.8)
lgo = digsn? - 1 - e (2.16.9)
~(Qin-Qi)’

Converting EQ.(2.16) into a system of polynomial equations by substituting the
trigonometric identities:

S =2t/+t) and C;=(1-t})/+t})

where t, = tan (6i/2), then Eq. (2.16) can be written as follows:

i itk —

bt = 0
j=0,1,2
k=012

(2.17)

wherei= 1,2,3 (modulo3)
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‘g0 = '91+ g+ g7+ e (2.17.1)
‘g1 = 2( "2+ 'ge) (2.17.2)
‘g2 = -+ '~ "0+ ' (2.17.3)
'a10 = 2( '+ 'q5) (2.17.4)
'y = 4'g (2.17.5)
'ag = -2('ga- ') (2.17.6)
‘a0 = -'s- ‘g5 a7+ ' (2.17.7)
‘a1 = -2( '~ 'g) (2.17.8)
'az2 = '01- '0s- a7+ 'qe (2.17.9)

'O, N= 1-9 , are given in Eq.(2.16.1)-(2.16.9)

The traditional 1-homogeneous Bezout number of Eq.(2.16) is 4°=64, however the
3-homogenous Bezout number is 16, which indicates this polynomial systems has 16
solutions. Using the Sylvester dialytic elimination method, Eq.(2.16) can be reduced to a
16"-degree polynomial with respect to a single variable and close-form solutions can be
obtained. Detailed procedures can be found in [6].

3-2-1 Sensing

In this case, there exists a loop-closure equation with 5 joint angles sensed and 1 joint angle
unsensed. For each closed-form solution derived from this equation, the problem of locating
P3 reduces to the case of 3-3-1 sensing. The number of the solutions depends on the relative
position and directions of the unsensed joints as discussed in Section 3.2.3. If two unsensed
joint axes are intersecting or parallel, there are up to four forward displacement solutions. If
two unsensed joint axes are skew, up to eight solutions may exist. All these solutions can be
expressed in analytical forms.



34

2.4. Application of Forward Displacement Analysisin Joint Sensor Fault

Detection

Since STriDER is expected to perform field tasks such as deploying vision/sound sensors,
surveillance and so on, the study on the robot’s fault tolerant operation thus becomes
necessary. The successful implementation of the fault tolerant operation can allow a field
robot to remain operational after a failure without any degradation in performance, or with
limited performance but still able to terminate the task safely.

As a fundamental step towards a complete framework of the fault tolerant operation, the
detection of the faulty joint sensors in STriDER’s three legs should be considered firstly.
Based on the forward displacement analysis presented in previous chapters, a sensor fault
detection method is proposed which utilizes the comparison of multiple forward displacement
solutions for different sensing cases. The existence of common solutions based on the sensed
joint angles can effectively identify the existence of a failed sensor.

2.4.1. Sensor Fault Detection Scheme

The method proposed in this chapter utilizes the readings from all nine joint sensors including
both the failed and accurate sensors, as well as the premeasured lengths of STriDER’s base in
its triple stance phase. The side lengths of STriDER’s triangular base are used as the actual
values in the detection process. The objective of the detection scheme is to identify the
possibly erroneous readings from all nine joint sensor candidates. Depending on the actual
number and distribution of failed sensors in the three legs, the results of the detection scheme
could have three levels:

1. If there is only one failed sensor out of the nine, the failed sensor can be marked;

2. If there are at least two failed sensors in one leg, then the leg can be identified;

3. If more than one leg has a failed sensor, the faulty sensing case can be detected but
neither the legs with failed sensors nor the corresponding failed sensors can be
identified.

Assume the readings from the failed joint sensors have small errors around their expected

values; the two steps of the detection scheme are as follows:

Step 1. Check if any joint sensor is failed by calculatingHR -P, H i,j=123andi #]j.

Compare these values with the premeasured lengths pip;. If they are within a specified
tolerance, then the joint sensors of the legs can be considered accurate. If not, there are two
possible cases:

e Case 1. If HPJ —PkH - pipc and [P -R| - pi px are greater than the error

tolerance, then leg k has at least one failed sensor.

e Case2: If none of the three quantities HR -P, H I, ] = 1,2,3 satisfies the tolerance,

then more than one leg has failed sensors. Unfortunately, in this case, neither
the legs with failed sensors nor the failed sensors can be identified. More
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sensing information of STriDER, e.g., the position and orientation of the body,
is needed in order to calibrate all failed sensors.

Step 2. Use the sensing case with seven joint angles (3-3-1) to mark the joint with the
failed sensor. Following Case 1 in Step 1, if there is only one leg k has a failed joint sensor(s),
e Similar to the 3-3-1 sensing case discussed in Section 2.3, the global position
vectors of the feet P; and P, are considered accurate. Then, the locus of the foot
P« is a spatial circle C;; because of the constraints implemented by the base
triangle. For the readings of the three joint sensors in leg k, one reading is
treated as a sensed joint angle and the other two are treated as unsensed joint
angles in each calculation of the forward displacement solutions. Depending on
the layout of the unsensed joints, the locus of P under the constraints of leg k
can be a sphere, a torus or a ring plane. Inspecting the three sets of forward
displacement solutions generated, if only one sensor in leg k is failed, then two
of the solution sets obtained are based on the accurate readings and they must
have common solutions. The forward displacement solution calculated with the
erroneous reading will not have common solutions with the other two, thus

allowing the failed sensor to be marked.
e However, if no pairs of solutions sets have any common solutions, then leg k
must have at least two failed joint sensors and the two sensors cannot be marked

exactly.

In Step 2 of the method presented above, the constraints in all three legs are considered. A
second detection approach that considers the constraints of only two legs at a time could be
used as an alternative way to double-check or confirm the results obtained from Step 1 and 2.

Consider the closed loop generated by leg i and j. The location of P, is constrained by leg
i to be on a sphere SP;; with the center at P, and radius pip;. Assume the joint sensors on leg i
are perfect and leg j has one failed sensor. In each calculation, treat two out of the three joints
sensors in leg j as sensed angles, the locus of P; is then a spatial circle C;; with the center at
the unsensed joint. A sphere and a circle typically have two intersection points. Inspecting the
three solution sets generated from the sphere and the circle, if no common solution can be
found, then leg j at least has one failed sensor. This is because two of the three solution sets
are based on the erroneous reading. The two accurate joint sensors can guarantee that at least
one solution set exists. Therefore, if no solution exists at all for the intersection of the sphere
and the circle (only imaginary solutions exist), leg j must have at least two failed sensors.

The second detection method can confirm the results of Step 1 and 2 through the
following three ways:

1. 1f N C;, | = 1,23 for the hip rotator, flexure and knee joints, have a common

solution, then the joint sensors of leg i and | are accurate.

2. If the joint sensors of leg i and | are accurate, SP; N Ci and SP; N Ci do not have

common solutions, then leg k has at least one failed sensors.

3. If SPyN Ci and SP; N Cik do not even have a solution, then leg k has at least two

failed sensors.
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2.4.2. Summary and Discussion

The sensor fault detection method in Sec.2.4.1 utilizes the common solutions of the forward
displacement in some redundant sensing cases to identify the leg with failed sensors or mark
the failed sensor. Theoretically, this approach can work effectively for the cases with
erroneous reading from one or two joint sensor in one leg, i.e. 3-3-2 and 3-3-1, where the
number is used to denote the perfect sensors in one leg. If at least two legs have failed sensors,
such as 3-2-2, 3-2-1 or 2-2-2, only the cases themselves can be detected and neither the legs
with failed sensors nor the inaccurate sensors can be identified.

Note that, since the detection method does not use any information of the current position
and orientation of STriDER’s body, it is unable to detect the fault cases if the erroneous
readings coincident with one of the forward displacement solutions. A complete calibration
of all nine joint sensors requires more information as the input.
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Chapter 3 Simulation of the Inverse and Forward Kinematics

Algorithm

Examples and results are presented in this chapter to verify the theory discussed in the
previous chapters. The parameters of the kinematic configuration are measured from the first
prototype of STriDER. Based on these data, the inverse displacement problem and the
forward displacement problem of the non-redundant 2-2-2 case of sensing are successfully
solved. The results obtained from calculations match each other very well.

Using the equations developed in Chapter 4, examples of the inverse and forward singular
configurations of the robot is displayed. For each forward singular case presented, the
unconstrained DOF is identified and the elimination scheme based on redundant actuation is
proposed.

3.1. Inverse Kinematics Example

The inverse displacement analysis displayed here relates to a general case. As
mentioned in the inverse displacement analysis section, the known values for this calculation
include; the global body position and orientation, 6y, as well as all foot positions. Also the
following link lengths were taken from the prototype and used in this simulation, L;=0.0935
m, L1i= 0 m, L»=0.0935 m, L3=0.5 m, and L4=1.3 m. The base is assumed to be a equilateral
triangle with the length of the side dj+1) = 1.24m.

Based on the coordinates setup in Fig.1.5, Table 3.1 and Table 3.2 list the global body
position and orientation and the global foot positions for each leg respectively. Once these
values are selected, the step by step approach previously discussed in Chapter 2 is preformed.

TABLE 3.1 BODY POSITION AND ORIENTATION RELATIVE TO GLOBAL COORTINATES

X Rotation (roll) 10°

Y Rotation (pitch) 5°

Z Rotation (yaw) 0°
X Translation 0om
Y Translation 0om
Z Translation 1.6m
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TABLE 3.2 GLOBAL FOOT POSITIONS FOR EACH LEG

Foot Position X (m) Y (m) Z(m)
Py 0.716 0 0
P, -0.358 0.620 0
P3 -0.358 -0.620 0

First, a homogenous transformation from the global coordinated to the hip rotator joint is
preformed, as shown in Eq. (2.1). Next, the relative location of each foot position to hip
rotator joint is calculated using Eqg. (2.4). As previously stated, by treating each leg as an
serial manipulator the internal joint angles 6,;, 65; and 6, are calculated as shown in Eq.(2.5),
(2.6) and (2.8). Table 3.3 lists the results of these calculations for a knee-up scenario.

TABLE 3.3 INVERSE DISPLACEMENT ANALYSIS RESULTS (ELBOW DOWN)

Leg Number (i) O, 0 O,
1 -10° 59.628° | -49.243°
2 0.802° | 34.781° | -38.275°
3 9.817° | 61.252° | -49.877°

3.2. Forward Kinematics Example

With the data listed in Table 5, the forward displacement analysis in a 2-2-2 symmetric
non-redundant sensing case is co